- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brooks, Josephine (2)
-
Carbonero, Alvaro (2)
-
Narayan, Darren A (2)
-
Rooney, Brendan (2)
-
Vargas, Joseph (2)
-
Florez, Rigoberto (1)
-
Flórez, Rigoberto (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A vertex in a graph is referred to as fixed if it is mapped to itself under every automorphism of the vertices. The fixing number of a graph is the minimum number of vertices, when fixed, that fixes all of the vertices in the graph. Fixing numbers were first introduced by Laison and Gibbons, and independently by Erwin and Harary. Fixing numbers have also been referred to as determining numbers by Boutin. The main motivation is to remove all symmetries from a graph. A very simple application is in the creation of QR codes where the symbols must be fixed against any rotation. We determine the fixing number for several families of graphs, including those arising from combinatorial block designs. We also present several infinite families of graphs with an even stronger condition, where fixing any vertex in a graph fixes every vertex.more » « less
-
Brooks, Josephine; Carbonero, Alvaro; Vargas, Joseph; Florez, Rigoberto; Rooney, Brendan; Narayan, Darren A (, Mathematics)null (Ed.)An automorphism of a graph is a mapping of the vertices onto themselves such that connections between respective edges are preserved. A vertex v in a graph G is fixed if it is mapped to itself under every automorphism of G. The fixing number of a graph G is the minimum number of vertices, when fixed, fixes all of the vertices in G. The determination of fixing numbers is important as it can be useful in determining the group of automorphisms of a graph-a famous and difficult problem. Fixing numbers were introduced and initially studied by Gibbons and Laison, Erwin and Harary and Boutin. In this paper, we investigate fixing numbers for graphs with an underlying cyclic structure, which provides an inherent presence of symmetry. We first determine fixing numbers for circulant graphs, showing in many cases the fixing number is 2. However, we also show that circulant graphs with twins, which are pairs of vertices with the same neighbourhoods, have considerably higher fixing numbers. This is the first paper that investigates fixing numbers of point-block incidence graphs, which lie at the intersection of graph theory and combinatorial design theory. We also present a surprising result-identifying infinite families of graphs in which fixing any vertex fixes every vertex, thus removing all symmetries from the graph.more » « less
An official website of the United States government
